

MyGrid – A complete solution for running
Bag-of-Tasks Applications

Lauro Beltrão Costa, Loreno Feitosa, Eliane Araújo, Gustavo Mendes,
Roberta Coelho, Walfredo Cirne, Daniel Fireman

Departamento de Sistemas e Computação - Universidade Federal de Campina Grande
(UFCG) Caixa Postal 10.106 – 59.109-970 – Campina Grande – PB – Brasil

{lauro,loreno,eliane,gustavo,roberta,walfredo,fireman}@dsc.ufcg.edu.br

Abstract. MyGrid is a complete grid solution for running Bag-of-Tasks
applications (i.e. parallel applications whose tasks are independent) over
whatever resources are available to the user. MyGrid middleware empowers
users to interoperate with heterogeneous computational resources across
geographic and administrative boundaries. Due to MyGrid’s flexible
architecture, it is easy to add a new kind of machine in the grid through an
abstraction called grid machine. The grid machines implementations currently
available in MyGrid are user agent, grid script and globus grid machine. This
work shows how MyGrid works and its main concepts. We present a parallel
application, MyPhotoGrid, in order to demonstrate a practical use of MyGrid.

1. Introduction
Grid computing is becoming a buzzword ubiquitously present not only in academia but
also in industrial area. What is the aim of grid computing and why more and more
people are interested in it? Grid computing promises the virtualization of computing,
making it possible to think about computing on demand. Congregating machines from
different networks and using its idle cycles would provide computational power similar
to those offered by supercomputers.
 In fact, the grid infrastructure to support this vision is not yet available.
Nevertheless, high performance computing and scientific academic applications are
starting to take advantage of grid computing. MyGrid intends to be a complete solution
for grid computing [6]. It offers not only the middleware but also the abstractions and
services needed for creation and usage of a grid. In order to achieve its goals, MyGrid
forfeits supporting arbitrary application for focusing on Bag-of-Tasks (BoT)
applications.
 BoT applications are those parallel applications whose tasks are independent of
each other. Despite their simplicity, BoT applications are used in a variety of scenarios,
including data mining, massive searches (such as key breaking), parameter sweeps [1],
simulations, fractal calculations, computational biology [2], and computer imaging
[3][4].

 MyGrid’s design goals are to create a system that is simple, complete and
encompassing. By simple, we imply that MyGrid should be as close as possible to an
out-of-the-box solution. Users want to run their applications. The least they get
involved into grid details, the better. Towards this goal, MyGrid team is working on
minimizing the installation effort. This is important because if the user had to manually
install MyGrid on the numerous machines that form the grid, the simplicity of the
solution would suffer.
 Complete means that MyGrid must cover the whole production cycle, from
development to execution, passing through deployment and manipulation of input and
output. This goal is the key for MyGrid to be useful in practice. In order to support all
activities within the production cycle of a BoT application, MyGrid provides the notion
of working environment, which is a small set of abstractions that enables users to
manipulate their files on the Grid.
 Owing to their loosely coupled nature, BoT applications can potentially use a
very large number of processors. Therefore, we do not want MyGrid to preclude the
user from using a given processor. We want MyGrid to be encompassing, in the sense
that all machines the users have access to can be utilized to run their BoT applications
 The remaining of this paper is structured as follows: Section 2 presents the key
concepts needed to understand MyGrid. Section 3 describes the MyGrid’s architecture
and details the main components of its architecture. Section 4 shows MyPhotoGrid, a
sample parallel application that runs over MyGrid. Finally, Section 5 finishes up the
paper with our final remarks.

2. MyGrid Main Concepts
In order to understand how MyGrid works it is necessary to get familiarized with some
concepts. A BoT application (and thus a MyGrid job) is composed by a set of
independent tasks. The user must have a machine to coordinates the execution of BoT
applications through MyGrid. This machine is called home machine. The user submits
the tasks that compose the application to the home machine, which is responsible for
farming out the tasks in the user’s grid. The home machine will oftentimes be the user’s
desktop. In this sense, the user has good access to the machine and may set up a
working environment on it.
 The home machine schedules tasks to run on grid machines. In contrast to the
home machine, grid machines may not have been customized by the user to create a
familiar working environment. Moreover, grid machines do not necessarily share file
systems with the home machine, nor do they have the same software installed on them
(even the operating system can differ). Ideally, the user does not want to treat grid
machines individually.
 Each MyGrid task is formed by initial, grid, and final subtasks, which are
executed sequentially in this order. Subtasks are external commands invoked by
MyGrid. The initial and final subtasks are executed on the home machine. The initial
subtask is meant to set up the task’s environment by, for instance, transferring the input
data to the grid machine. The final subtask is typically used to collect the task’s results
back to the home machine. The grid subtask runs on a grid machine and performs the
computation per se.

3. MyGrid Architecture
The main goal of the MyGrid is to provide a global execution environment composed of
all machines that user has access to. In order to achieve this goal, MyGrid strives to
isolate two points of heterogeneity: (i) the usage of a resource (ii) and the way to gain
its access. This is done by defining two interfaces: the GridMachine (GuM) interface
and the GridMachineProvider (GuMP). The MyGrid scheduler (the module responsible
for starting and monitoring the user’s tasks) uses GuM as an abstraction for a machine
and GuMP as an abstraction for a set of machines.
 GuM encapsulates the minimal set of services that must be available in a
machine, allowing its use as part of a grid. These services are:

• Task start-up on a grid machine (remote execution);
• Cancellation of a running task;
• File transfer from the grid machine to the home machine;
• File transfer from the home machine to the grid machine;
• Connectivity check (ping);

 This virtualization enables a simple working of the MyGrid since it does not
need to know details about grid machines. Note that this also eases the addition of new
resources to MyGrid, since implementing the interface is all that is needed.
 GuMP make it possible for MyGrid to use resources controlled by third entities.
This is key for MyGrid to be able to use parallel supercomputers. Parallel
supercomputers are important elements in the Grid [5], because of its great
computational power. Since MyGrid aims to use every resource that users have access
to, it is natural to provide a way to use supercomputers resources, increasing the size of
the users’ grid. However, their way of use is different from other computational
resources. Supercomputers are space-shared, what means that many users can use the
resource but not at same time, differently from most machines, which are time-shared
(more common). The space sharing is enforced by the supercomputer resource manager
(or scheduler).

 Figure 1 – MyGrid architecture

 Our approach to fulfill this necessity is the GridMachineProvider. The
GridMachineProvider (GuMP) abstracts how the user must gain access to resources

(i.e. the job submissions details that are particular of each resource manager). Each
GuMP obtains and controls the access to a set of resources, managing their availability
and access gaining method. Thus, it provides MyGrid with GuMs that can be used to
access transparently these resources, without knowing the underlying means used by the
implementation of the GridMachine interface to use the resources.
 The Figure 1 shows how the architecture works. The MyGrid Scheduler asks for
GuMs (1), the GuMProvider gains access to requested resources and delivers the GuMs
(2); the Scheduler assigns tasks to received GuMs (3). This approach keeps the MyGrid
Scheduler simple since a GuMP “translates” space shared resources into time-shared
ones.

3.1. GridMachine Implementations
As shown in section 2, the GuM interface provides methods that enable MyGrid to
communicate with grid machines. MyGrid has three native implementations of GuM: (i)
UserAgent, (ii) GridScript, and (iii) GlobusGridMachine. Figure 2 shows the
GridMachine interface and its implementations, which will be described below.

UserAgent Server

UserAgent Client

UserAgent Server

UserAgent Gateway

 Scheduler

 GridMachine

GridScriptGlobus GridMachine

Globus

Figure 2 - Grid Machine Interface and its implementations

UserAgent
UserAgent (UA) is simple Java-based implementation of GuM designed for the
situation on which it is easy for the user to install software on the grid machines. The
communication between MyGrid and UA is done via Remote Method Invocation – RMI
[9].
 Since UserAgent is a component of MyGrid, it was extended to implement other
functionalities like instrumentation and fault handling. Another important feature
implemented in the UserAgent is a relay that allows communication with machines
within a private network. Once such machines are identified by a private IP addresses,
they could not be accessed directly by the home machine, only via a host that has access
to home and grid machines. To solve this problem, we developed a user-level relay
called UserAgent Gateway.

GridScript

The Grid Script (GS) provides the same functionalities of User Agent using scripts
instead of running a Java process. The script can be used when the user has access to the
GridMachine through widely deployed software, such as: ssh, rsh and ftp. Users can
take advantage of GS to access a GridMachine through a firewall since firewalls
typically leave common service ports open. Moreover, users can furnish GS with
whatever access scripts they have. This enables MyGrid to fulfill its promises of using
whatever resources a user can access (provided that the user has a command-line way to
do remote execution and file transfer to the resource).

Globus
In order to interoperate with Globus 3.0 [8], maybe the most popular grid middleware
and the first complete implementation of OGSI [10] [11], we developed a GuM
implementation named GlobusGridMachine. This integration allows redirecting
requests received from MyGrid to Globus machines. File transfer and tasks executions
are performed by Globus using its grid services. These requests are done in a secure
way, using the Globus Security Infrastructure – GSI [8].
 Globus uses two services to perform remote execution and file transfer,
respectively: Master Fork Managed Job Factory Service - MFMJFS and Grid File
Transfer Protocol – GridFTP. The first one is a grid service that redirects MyGrid
requests’ to Grid Resource Allocator Manager – GRAM, responsible to execute tasks.
The second one is a service that should be installed in home machine and grid machines
to allow transfer files.

3.2. GuMP Implementations
In the current version, two GuMPs are available in MyGrid: LocalGuMP that manages
machines which user has direct access to and CRONOGuMP that communicates with
CRONO Scheduler. CRONO [13] is a supercomputer resource manager developed by
PUC-RS. Its main purpose is to reduce the complexity of the management, avoiding
generic resources, keeping it simple to install and use.
 The jobs submitted to CRONO by CRONOGuMP are not the tasks of MyGrid’s
Job themselves but UserAgents. In this way, when a UserAgent is available it informs
to CRONOGuMP. This is a technique very similar to shown in [3].
 This approach has several advantages comparing with sending the tasks of
MyGrid’s job: (i) the functioning of MyGrid Scheduler is the same, (ii) we can use a
processor many times before losing it and (iii) since we implement UserAgent is easier
to adapt it and causing it able to monitor and inform some events to CRONOGuMP and
consequently to MyGrid.
 In future versions MyGrid will provide others GuMPs to communicate with
others Supercomputers' schedulers (such as PBS and Maui).

4. MyPhotoGrid
While MyGrid was developed to support scientific applications, we selected for the
demo, an application that could appeal to wider audience. The introduction of high-
resolution digital cameras placed regular users as the producers of enormous amounts of

data. For example, one of authors of this paper produced 18 GB of digital photos in the
last 6 months. An interesting alternative would be to use the grid to create digital
albums from these photos. It is supercomputing reaching the masses! That is exactly
what MyPhotoGrid does.
 MyPhotoGrid creates a web album from large set of digital images. A possible
kind of digital albums is composed by three images (a thumbnail, a regular size image
and a big one) generated from the original picture. The album index contains a list of
thumbnails that are hyperlinks to the regular image, which links to the big image.
 The process of album creation is time consuming because processing thousands
of images can take a lot of time. Since photo editing is independent from each other
what makes it a BoT application. The idea is to use MyGrid to make photo editing in a
parallel way. When all photos processing results were available, the index will be built
locally. MyPhotoGrid is an application available in MyGrid distribution that performs
digital photo album generation.
 In order to use MyGrid it is necessary to create a grid description file and a job
description file. The grid description file contains needed information for MyGrid to
communicate with each grid machine. A sample of grid description file generated by
MyPhotoGrid can be seen in Figure 3.

Figure 3 - Grid description file

 It is also necessary to describe the job. Such description specifies, for each task,
how to execute the task, which files must be copied in order to the application works
and which files must be collected. A sample job description file generated automatically
by MyPhotoGrid is shown in Figure 4. For further information about configuration files,
see [11].

Figure 4 - Job description file

proc:
name = jedi.lsd.ufcg.edu.br
type = user_agent
attributes = linux
copy_to = scp %localdir/%file %machine:%remotedir/
copy_from = scp %machine:%remotedir/%file %localdir/
rem_exec = ssh %machine %command

proc:
name = yoda.lsd.ufcg.edu.br
type = user_agent
attributes = linux
copy_to = scp %localdir/%file %machine:%remotedir/
copy_from = scp %machine:%remotedir/%file %localdir/
rem_exec = ssh %machine %command

JobAttribExpression = linux

task:
init = scripts/init.myphotogrid images/TimesSquare.tif
remote = java ImageProcessor images/TimesSquare.tif
final = scripts/collect.myphotogrid TimesSquare.tif
task:
init = scripts/init.myphotogrid images/NewYork.tif
remote = java ImageProcessor images/NewYork.tif
final = scripts/collect.myphotogrid NewYork.tif

 MyPhotoGrid works as shown in Figure 5. It generates the job description file
from the set of photos to be processed (1). The job and grid description are passed to
MyGrid that uses them to schedule the tasks, processing images in grid machines (2).
After all photos are generated and their results are available in the home machine (3),
the album creation is performed (4).

Figure 5 - MyPhotoGrid lifecycle

 We have performed a set of experiments to generate an album to 89 photos with
a total input size of 740MB. And 13 similar non-dedicated machines of our lab
composed the grid description file.
 The experiments show that MyPhotoGrid has attained a performance that is 4.2
times faster than its correspondent standalone version. It is worth to point out that the
standalone version executed in a dedicated machine with similar configuration and local
data access instead of data transfer across LAN like performed in MyPhotoGrid.
 To obtain good results, the init and final sub-tasks could not consume a lot of
time in comparing with remote sub-task. This occurs because the grid machines must
wait the data transfer to begin execution of a task, i.e. data transfer is overhead. Further
discussion about efficiency of grid for BoT applications can be found in [6][13] .

5. Final Remarks
This work presented a practical view of MyGrid along with its abstractions and
architecture. MyGrid is a system designed to make grid computing real. Or, at least, real
for the users of Bag-of-Tasks applications (those parallel applications whose tasks are
independent). The rationale behind MyGrid is to focus on a narrower problem than the
general grid problem, but solve it thoroughly, in a way that real users can benefit from .
 While most Bag-of-Tasks applications are very technical, we purposely selected
an application that could interest everybody. We intend to present MyPhotoGrid, a
high-performance MyGrid-based solution to process and organize large amounts of
digital photos. Not only MyPhotoGrid is appealing to a wider audience, it is also a good

example of the grid’s promises: Widely available large compute power to change the
way we do computing.

References
[1] D. Abramson, J. Giddy and L. Kotler. High Performance Parametric Modeling

with Nimrod/G:Killer Application for Global Grid, IPDPS’2000, pp. 520-528,
Cancun Mexico, IEEE CS Press, USA, 2000.

[2] J. R. Stiles, T. M. Bartol, E. E. Salpeter, and M. M. Salpeter. Monte Carlo
Simulation of Neuromuscular Transmitter Release Using MCell, a General
Simulator of Cellular Physiological Processes. Computational Neuroscience, pages
279-284, 1998.

[3] S. Smallen, W. Cirne and J. Frey et al. Combining Workstations and
Supercomputers to support Grid Applications: The Parallel Tomography
Experience. Proceedings of the HCW’2000 - Heterogeneous Computing Workshop.
2000. http://walfredo.dsc.ufcg.edu.br/resume.html#publications

[4] S. Smallen, H. Casanova, and F. Berman. Applying Scheduling and Tuning to On-
line Parallel Tomography. Proceedings of Supercomputing 01, Denver, Colorado,
USA, November 2001.

[5] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling
scalable virtual organizations. International Journal of Supercomputer
Applications, 2001.

[6] W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro, J. Sauvé, F. Alves,
C. Osthoff, C. Silveira, Running Bag-of-Tasks Applications on Computational
Grids: The MyGrid Approach, Proceedings of the ICCP'2003 - International
Conference on Parallel Processing, 2003.

[7] Globus Project Web Site, http://www.globus.org. (January, 2004)
[8] Remote Method Invocation, http://java.sun.com/products/jdk/rmi/
[9] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire,

T. Sandholm, P. Vanderbilt, D. Snelling, Open Grid Services Infrastructure (OGSI),
Global Grid Forum

[10] I. Foster, D. Gannon,The Open Grid Services Architecture Platform, 2003.
http://www-unix.gridforum.org/mail_archive/ogsa-wg/doc00016.doc (January,
2004)

[11] MyGrid http://www.ourgrid.org/mygrid (January, 2004)
[12] M.A.S. Netto, C.A.F. de Rose, Crono: A configurable and easy to maintain

resource manager optimized for small and mid-size GNU/Linux Clusters,
Proceedings of the ICCP'2003 - International Conference on Parallel Processing,
2003.

[13] W. Cirne, F. Brasileiro, J. Sauvé, N. Andrade, D. Paranhos, E. Santos-Neto, R.
Medeiros. Grid Computing for Bag of Tasks Applications.
Proceedings of the Third IFIP Conference on E-Commerce, E-Business and E-
Goverment. September 2003

