
Multi-Environment Software Testing on the Grid
Alexandre Duarte, Gustavo Wagner, Francisco Brasileiro, Walfredo Cirne

Departamento de Sistemas e Computação
Universidade Federal de Campina Grande

Campina Grande, Brazil
+55 83 3310 1365

{alex, gustavo, fubica, walfredo}@dsc.ufcg.edu.br

ABSTRACT
We propose a solution to improve the confidence on the
correctness of applications designed to be executed in
heterogeneous environments, like a grid. Our solution is
motivated by the observation that the traditional ways to
qualify test processes are based on code coverage metrics.
We believe that this approach is not adequate when dealing
with applications that can (and do) fail when interacting
with heterogeneous execution environments. Besides code
coverage, tests must also cover possible environments. As a
solution we propose the utilization of InGriD to describe
and deploy test environments and GridUnit to coordinate
and monitor the execution of test sets. By combining these
two solutions we provide a cost effective way to introduce
environmental coverage to our test suites, which is
complementary and orthogonal to traditional code coverage
metrics. As a case study, we have shown how our solution
could be applied to help testing a grid application called
MyPhotoGrid, which uses the grid to parallelize the
generation of large photograph albums.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging –
Testing tools, Distributed debugging.

General Terms
Verification, Performance, Reliability

Keywords
Distributed Testing, Unit Testing, Computational Grid,
JUnit

1. INTRODUCTION
Software testing is a fundamental part of software
development. Examples of disasters caused by poorly or
untested software are widely available in the literature
[1][15]. Therefore, there is an increasing demand for better
support in the process of testing software.

The quality of a testing process is traditionally measured in
terms of code coverage, i.e., the extent to which a set of test
cases covers (or exercises) a program. Several widely
accepted test coverage metrics have been used in the last
few years, most of which are due to the Miller’s seminal
work [7].

Although software components may be exhaustively tested
in the development environment, thus scoring well on the
traditional test coverage metrics, we believe that the
possibility of running tests in a variety of environments can
improve the confidence on the correctness of the system
under test. This is because the production environment can
be very different from the development environment, being
a possible cause of failure. In fact, due to the complexity of
systems, nowadays each computing environment is unique.

This seems to be especially important when testing
applications aimed to run on very heterogeneous
environments like computational grids [10][12][20]. Two
surveys we have conducted with computational grid users,
although receiving a small number of responses, presented
good anecdotal evidence for this observation. A
questionnaire containing 5 questions, including “What are
the most frequent kinds of faults you face when using a
grid?”, was made available on the Web and advertised in
several grid discussion lists. Answers were received via the
Web form as well as by e-mail. We have conducted two
advertisement campaigns. The first one was made during
April 2003 and resulted in 22 responses [18]. The second
one was conducted during April 2005 and resulted in 13
responses [4]. From the data collected we can state that the
situation regarding the type of faults that are more frequent
in 2005 remains almost the same as in 2003. The main
kinds of faults are related to the environment configuration.
In 2003, a little more than 75% of the responses pointed
this out, while in 2005 this was the main complaint of a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISSTA'06, July 17–20, 2006, Portland, Maine, USA.

Copyright 2006 ACM 1-59593-263-1/06/0007...$5.00.

little more than 60% of the respondents. These results
corroborate with [1], showing that configuration mistakes in
software installation are the major reasons for computer
system errors.

These are not good news since grid applications are
supposed to be correctly executed on a highly
heterogeneous and dynamic environment, encompassing
several different hardware/software configurations,
including different operating systems, and administrated by
different support teams, each one having its own
administrative policies. Based on these observations we
believe that a solution to improve the confidence on the
correctness of applications designed to run on
heterogeneous environments is to test them on a
representative set of the different production environments.
With this practice we expect to achieve an environmental
coverage, which is orthogonal and complementary to the
traditional code coverage metrics.

Creating a set of dedicated test environments looks like an
interesting approach to take. It allows the developers to
completely specify and deploy the selected test
environments but may result in high costs (time and money
related). If we need to maintain the same test execution time
testing the application on n different environments we will
need to use at least n machines. If we do not want to use
any additional machine to run the tests we will increase the
execution time by a factor of at least n plus the time needed
to create each test environment.

This approach has another drawback when applied to test
grid applications since it does not allow us to test the
application in face of the different use and administrative
policies present on the grid, which can be, by itself, the
cause of several problems.

So, how can one test an application on several different
environments without paying the high costs to create the
test environments and yet improve one’s confidence that the
application will be correctly executed even in the presence
of hostile administrative policies? We believe that the
answer to this question is to test the applications on a grid.

As shown in our previous work, the very high levels of
parallelism provided by grids can speed up the execution of
tests, increasing productivity and making the testing process
of large software a less expensive endeavor [5]. We built a
tool named GridUnit that is able to distribute and
coordinate the execution of JUnit [8] test cases on a grid
without any source code modification. Experiments
conducted with this solution have showed a speed-up of
almost 70 times in a grid with a hundred machines,
reducing the duration of the test phase of a synthetic
application from 24 hours to less than 30 minutes [5].

Now, we aim to improve our solution allowing it to fully
explore the other key characteristic of grids, its huge
heterogeneity, helping to improve the confidence on the

correctness of the system under test. To achieve this
objective we need to augment GridUnit with two new
capabilities: a mechanism to specify and deploy, when
necessary, the test environments and a way to define how
such environments should be used to test a given
application.

Our environment specification mechanism will allow us to
overcome an important limitation of grids as a test platform:
current grids provide only implicitly heterogeneous
environments; there is no effective way to explicitly specify
which environments should be used to test software.

Implicit heterogeneity can provide some benefits to
software testing since it allows finding configurations that
break the system under test. However, without knowing
which environments are being used to test the software, one
cannot correctly reproduce the test execution to figure out if
a previously detected fault was effectively removed and if
no faults were inserted since the last test session.

Providing a mechanism to explicitly specify desired grid
test environments solves this problem only partially. The
grid dynamicity provides a potentially huge number of
different environments, there is no way to assure that all
relevant environments to test a given application will be
available on the grid during the test phase. Therefore, the
solution to this important problem involves a mechanism to
explicitly specify test environments and to deploy such
environments if no suitable grid nodes were available at the
test phase.

Note that environment refers to everything an application
assumes about the resource where it is running, such as
operating system, hardware platform, data, applications and
libraries. So, a user may want to merge explicit and implicit
heterogeneity by partially specifying the environment.

In this paper we discuss how we augmented GridUnit to
fully explore the intrinsic characteristics of grids
(parallelism and heterogeneity) to efficiently improve our
confidence on the correctness of applications aimed to run
on highly heterogeneous environments like grids.

The remaining of the paper is organized as follows. In
Section 2 we present Incremental Grid Deployer (InGriD),
our solution to specify and deploy execution environments
on the grid. Next, in Section 3, we describe GridUnit, our
distributed testing solution, and explain how we augmented
it to use the InGriD’s execution environments to test
software. Following, in Section 4, we discuss some
experiments we conducted with our solution, showing how
InGriD and GridUnit can be used to effectively test grid
applications on a production grid. Section 5 presents the
related work and Section 6 concludes the paper
summarizing our discussion and sketching future work
proposals.

2. SPECIFYING AND DEPLOYING TEST
ENVIRONMENTS ON THE GRID
The main goal of InGriD is to provide an easy way to
deploy environments on a grid. For this purpose, there are
three main tasks: i) description of the environments in terms
of applications, configurations and data; ii) deploying the
environments in a set of grid resources and, iii) accessing
the applications and files deployed. To achieve these goals,
we have developed a system using SmartFrog to make
easier the deployment of environments to grid users [16].
SmartFrog is a framework formed by a language and a
runtime environment developed by HP Labs Bristol. It was
developed taking into account that configuration mistakes
in software installation are the major reasons for computer
system errors [1]. Thus, it was designed to automatically
manage and deploy components across multiple machines.
It consists of a language and a runtime environment that
supports application deployment.
Although SmartFrog is a great tool
for system administrators, it is not
integrated with any grid
environment.

InGriD aims to extend SmartFrog in
order to deal better with grid
applications and to provide some
predefined components that
otherwise would require some
additional efforts from a SmartFrog
user.

One of the characteristics of grid
applications is that they need to react
to environment changes. So, we have
developed components to download
the applications and data
incrementally, installing each part of
the application in different moments.

2.1 InGrid Architecture
Figure 1 shows the overall InGriD
architecture and its relations with
Environment Descriptions. These descriptions include all
the applications and files that the users need to run their
jobs in the grid. From a tester’s point of view, the
description contains all applications and data required by
the tests.

The first module is the Installer, which contains the rules
used to install applications and download data for the
specific environment. The InGriD user defines the original
location of applications and data and their location on the
grid machines. Note that the environment location in
different machines may be different, since InGriD exports a
global name for each application and data that can be used
in the job description. This is possible due to the Accesser
module discussed later.

The second module is the Configurator, which is
responsible for configuring all the parameters that the
applications of an environment need. For example, a user
may specify to alter an application port number from 4998
(the default) to 6000 in a configuration file. In this case, the
user does not need to open and alter the file manually.
Instead, the InGriD performs this task through the
deployment description. This reduces the complexity of
dealing with many configuration files in different contexts.

The third module is the Updater, responsible for the
incremental deployment rules of InGriD. The user defines a
frequency or a specific time to update each application and
data. After the specified time/times, InGriD removes the old
version of the application(s) and installs the new one. For
data, InGriD may also just download the new one without
removing the existing data, since some system should need
the old one.

Figure 1: InGriD High Level Architecture

The fourth module is the Accesser, responsible for storing
mappings from global to local names (the location of the
environments in each grid machine). A global name is a
name that gives access to applications and data and that is
valid in all machines that compose the grid. For example,
an environment called Globus 4.0.1, the user exports the
Globus job service (MMJFS) location as "jobservice" and
the grid data as "data". A tester may use
"Globus.jobservice" to refer to the Globus location and
"Globus.data" to refer to the specific data in a job
description. In this example, "Globus.jobservice" and
"Globus.data" are called global names, and point to the
local names in each grid machine. This mapping is very

important to grid users, since they usually do not know the
specific location of applications and data at each grid
resource.

The fifth and last module is the Grid Environment Manager
(GEM), which is responsible for all the environments
deployed in a site. It contains information such as
environment name and all machines that host it. It is useful
to schedulers because they may use only machines that
match the requirements of a particular job. Testers can use
it as a matcher for their test environments.

2.2 Environment Specification
In order to describe an environment, the user needs to
configure the components of the InGriD architecture. For
this purpose, InGriD provides a set of predefined
components that the user extends with the specific
characteristics of the required environment. Figure 2 shows
an example of an environment specification. In this
example the user describes the location of the GEM,
responsible for storing information about all the deployed
environments. After that, the user defines all the
components of the InGriD architecture. Note that in this
example we use the word extends for each component. This
means that, for example, installer component is an
extension of GlobusInstaller. This is possible because the
SmartFrog language is object oriented. Each defined
component such as GlobusInstaller and
GlobusConfigurator extends predefined components
developed in InGriD.

Figure 2: An example of environment description.

3. DISTRIBUTED TESTING WITH
GRIDUNIT
GridUnit [5] is a grid-based testing execution solution able
to distribute the execution of JUnit [8] test suites in a grid
with minimum user intervention. GridUnit is an open-
source project, licensed under the GNU LGPL license
terms, and can be freely downloaded from
http://gridunit.sourceforge.net. GridUnit was developed on top
of the OurGrid solution [20], although it can be easily
adapted to use other grid flavors, such as Globus [19], for
example.

OurGrid is an open, free-to-join, cooperative grid in which
users donate their idle computational resources in exchange

for accessing other users’ idle resources when needed. It
uses the Network of Favors [14], a peer-to-peer technology
that makes it in each user’s best interest to collaborate with
the system by donating their idle resources. OurGrid is in
production since December 2004 and now encompasses
around 300 machines in 20 sites distributed over Brazil and
Europe. A fresh snapshot of the running system can be seen
at http://status.ourgrid.org.

3.1 GridUnit Architecture
GridUnit can be seen as an intermediary agent between the
user/developer, who wants to run a JUnit test suite, and the
computational resources needed to run the tests, in this
case, the OurGrid. This brokering process involves four
main tasks: i) creation of a job description from the JUnit
TestSuite; ii) scheduling of the job’s tasks for execution on
the grid; iii) monitoring of the execution; and iv) presenting
the results to the user.

Figure 3 summarizes the GridUnit high level architecture
showing how it is constructed on top of OurGrid and how it
uses JUnit components.

Figure 3: GridUnit High Level Architecture

The GridTestRunner is responsible for the creation of the job
description from the TestSuite and for the scheduling of the
job for execution on OurGrid. A JUnit TestSuite specifies a
set of independent TestCases that should be executed in no
pre-determined order. An OurGrid job description specifies
a parallel application composed of independent tasks in
which each task may be executed in any order and at any
time. We refer to this kind of parallel application as Bag-of-
Task. Due to the similarity of concepts, (a JUnit TestSuite is
already a Bag-of-Tasks or a Bag-of-Tests) the conversion
from a JUnit TestSuite to an OurGrid job description is
straightforward. We simply create a job describing the
TestSuite and a task for each TestCase in the TestSuite. After
the conversion, the GridTestRunner schedules the execution

of the job on the grid using the
WQR [6] scheduling heuristic
provided by OurGrid.

Another component of
GridUnit, the GridTestMonitor, is
responsible for monitoring the
execution of the tests on
OurGrid and for converting the
data resulted from the execution
into a JUnit TestResult. This is
not a trivial task due to the
nature of the grid. There is no
predefined order in the
execution of the tests, and
therefore, any test can end at
anytime. Moreover, the new set
of failures that can occur due to
grid faults further complicates
this task. So, the GridTestMonitor
must be able to distinguish
between test failures and grid
failures in order to provide
reliable results to the user. This
is achieved by considering as
test failures only the exceptions raised by the JUnit
assertion mechanism. All the remaining exceptions are
considered as unexpected errors and indicate that the test
could be executed. GridUnit provides a detailed report
about these errors so the user can identify it they are due to
some defect in the system under test or are due to a problem
in the grid middleware.

The last component of GridUnit is its graphical user
interface, shown in Figure 4. This interface presents to the
user all information about the execution of tests as if they
were being executed in the local machine. In fact, to the
GUI, it is the same for remote and local execution.

Figure 4 shows an example of the execution of a test suite
on OurGrid. In this example, the test suite is composed of
288 test cases. The status bar, in the lower corner of the
window, shows that at that moment 75% (or 217) of the 288
test cases were executed and seven of them have failed due
to unsatisfied assertions. The progress bar is red because
there are test cases that failed due to these unsatisfied
assertions. It would be gray if some test case failed due to
unanticipated errors (e.g. exceptions not raised by the JUnit
assertion mechanism) and green if no test case failed at all.

The tree at the left corner represents the test case hierarchy
and shows the status of the execution of each test case using
tiny colored icons. It provides an overview of the execution
process. The GridUnit GUI provides the same amount of
detail about the execution of a test case as the traditional
JUnit test runners along with some additional information
about the environment where the tests were executed.

Figure 4: GridUnit Graphical User Interface

3.2 Main Features
The main features of GridUnit are those pointed by
Kapfhammer [11] as important aspects that a test
distribution tool must consider in order to improve the cost
effectiveness of the testing process:

Transparent and Automatic Distribution: GridUnit
considers each JUnit test as an independent task, scheduling
its execution on the grid without any user intervention.
Moreover, GridUnit does not require any modification in
the application source code.

Test Case Contamination Avoidance: Each test is
executed using the resource virtualization provided by
OurGrid, preventing that the execution of a test alters the
normal outcome of other tests.

Test Load Distribution: The job scheduler provided by
OurGrid achieves load distribution by allocating each test
for execution in the first available grid machine. So, each
grid machine receives a slice of the work proportional to its
computational power. To diminish the chance that a slow
machine slows down the overall computation the scheduler
replicates the work on a small number of machines.

Test Suite Integrity: The default JUnit test runner runs
each unit test as an independent task. For each test, it
creates an instance of the TestCase class, calls the setUp()
method, calls the testMethod(), calls the tearDown() method
and then destroys the instance. GridUnit reproduces the

same behavior with the difference that each test is
potentially executed in a different machine on the grid.

Test Execution Control: GridUnit graphical user interface
provides controls to start and stop the execution of the tests
of a given test suite. It also monitors the execution of the
tests and presents the result of the execution of each test as
soon as it is available.

3.3 Test Session Specification
After describing and deploying test environments using
InGriD, the tester must decide which of the available
environments will be used to test an application. To
accommodate this requirement we have augmented
GridUnit to provide support to use a Test Session
Specification Language (TSSL) based on XML. A
TestSession is composed of a list of TestEnvironments,
followed by a list of TestSuites, followed by a list of
TestCases.

A TestEnvironment is the name of an InGriD environment
where each of the TestSuites and TestCases described in the
TestSession must be executed. A TestSuite is a reference to
a JUnit test suite, where the id parameter represents the
fully qualified test suite class name. It is followed by an
optional list of additional test environments where all tests
of the TestSuite must be executed. A TestCase is described
in a similar way, but it refers to a single JUnit test case.

Figure 5 shows an example of a TSSL file describing a
simple TestSession. In this example, we illustrate the
cumulative nature of our description. We have defined a
test session named SimpleTestSession, a test suite named
SimpleTestSuite and two test cases named TC1 and TC2.
We have also referenced four execution environments
previously defined using InGriD (ENV_A, ENV_B,
ENV_C and ENV_D).

Figure 5: Simple TSSL file

With this simple description all tests located in
SimpleTestSession will be executed on the environment
ENV_A, all tests located inside SimpleTestSuite will be
executed on the environments ENV_A and ENV_B, the test
case TC1 will be executed on the environments ENV_A,

ENV_B and ENV_C and the test case TC2 will be
executed on the environments ENV_A and ENV_D.

We believe that this description is very simple and powerful
enough to allow one to specify environment dependencies
for any test case. In the next section we will put all these
things together and present a real case study.

4. TESTING MYPHOTOGRID
The introduction of high resolution digital cameras placed
regular users as the producers of enormous amounts of data.
For example, one of the authors of this paper produced 35
GB of digital photos in the last 6 months. An interesting
alternative would be to use the grid to create digital albums
from these photos.

MyPhotoGrid creates a web album from a large set of
digital images. A possible kind of digital albums is
composed of three images (a thumbnail, a regular size
image and a big one) generated from the original picture.
The album index contains a list of thumbnails that are
hyperlinks to the regular image, which links to the big
image.

The process of album creation is time consuming because
processing thousands of images can take a long time. Photo
editing is independent from each other, which makes it an
embarrassingly parallel application or, simply, a Bag-of-
Tasks application. The idea is to use a grid to make photo
editing parallel. When all photos processing results are
available, the index will be built locally.

MyPhotoGrid has two main modules, one that runs in each
remote grid node and is responsible for resizing and
sharpening the images and create appropriate links for them
and another one that runs in the local machine and is
responsible for combining the results and producing the full
HTML album.

It is interesting to test the remote part of MyPhotoGrid
using different hardware/software configurations in order to
improve the confidence in its correctness. So, it is a good
target for our grid testing approach.

Analyzing the current OurGrid deployment, we found that
there are two different Java virtual machine
implementations installed in the grid nodes: Sun JVM 5.0
and JRockit 5.0. Also, our previous analysis has shown that
there are two main hardware architectures available: Intel
Pentium 4 and Intel Itanium 2, and we want to test the
software using these two hardware platforms. Based on
these observations we have four testing scenarios: Sun JVM
+ Pentium 4, Sun JVM + Itanium 2, JRockit + Pentium 4
and JRockit + Itanium 2.

Our solution requires three steps in order to achieve this
objective:

1. First, we need to write the appropriate InGriD
environment specifications, as shown in Figure 6. There, we
can see two component descriptions. The first one,

<TestSession id="SimpleTestSession">
 <TestEnvironment>Env_A</TestEnvironment>
 <TestSuite id="SimpleTestSuite">
 <TestEnvironment>Env_B</TestEnvironment>
 <TestCase id="TC1">
 <TestEnvironment>Env_C</TestEnvironment>
 </TestCase>
 </TestSuite>
 <TestCase id="TC2">
 <TestEnvironment>Env_D</TestEnvironment>
 </TestCase>
</TestSession>

environment, describes the components that InGriD needs
to deploy an application. Installer, Configurator and
Accesser are extension of template components. So, the
InGriD user needs just to describe specific configuration, as
we can see on the SunJVMInstaller component. The tester
describes where is the tarball of the JVM, where InGriD
will install the JVM and the steps to install the JVM
(installScript in the figure). The tester needs also to
describe the configurator and accesser modules. Although
it is possible for the InGriD user to define the Updater
component, we had not defined it here since testers do not
need to update the JVM versions. With this description, the
tester sends it to SmartFrog in all test’s machines and the
environment will be deployed.

2. Then, we need to instruct GridUnit to run the
MyPhotoGrid test cases using the four test scenarios, as
shown in Figure 7. As we can see, this description is fairly
simple. We create a test session containing one single test
suite (myphotogrid.tests.AllTests), and then we specify that
our test suite should be executed using four different test
environments (Sun_P4, Sun_Itanium, JRockit_P4,
JRockit_Itanium).

3. Now, after the two configurations steps above, we use
GridUnit to coordinate and monitor the execution of the
tests. It is as simple as using the regular JUnit test runners.

Figure 6 - MyPhotoGrid Environment Description

5. RELATED WORK
Parallel testing has been used for a while to test hardware
systems but, to the best of our knowledge, Starkloff [9] was
the first to advocate the application of parallel and

distributed technologies to testing of computer software
systems. Starkloff summarizes some general advantages of
this approach and briefly reports on a multithreaded tester
that can be used to run several independent test sequences
in parallel. Kapfhammer [11] describes the conceptual
foundation, design, and implementation of Joshua, a tool
that distributes the execution of regression test suites for
Java-based software systems. Lastovetsky [2] relates the
experience of the use of parallel computing technologies to
accelerate the testing of a complex distributed programming
system. The design and implementation of the parallel
testing system are described and some experimental results
show that the system is efficient, speeding up the test
execution

Figure 7: MyPhotoGrid Test Session Specification

All these works are focused only on speeding up the
execution of the tests. They are of no help when one needs

to force the execution of tests using different
hardware/software configurations in order to
improve the confidence on the correctness of
the system under test.

The Skoll project [3] proposes a quality
assurance process that aims to use distributed
computational resource around the world to
test software in a variety of configuration
scenarios. It provides a mechanism to specify
test scenarios (configuration model) but it
lacks the support to deploy unavailable
scenarios. Additionally, Skoll users need to
have direct access to all computational
resources they may need to execute the tests
since it does not relies on any resource
sharing mechanism, like a grid.

There are a lot of works regarding system
deployment. LCFG [15] is a deployment tool
that is typically used to install Linux
environments. It is used in environments that
change constantly their configurations. LCFG

is formed by a set of machine profiles, which are
descriptions of how to configure and install applications.
LCFG has a central server that manages all the profiles and,
when profile description changes, all the machines that
contain those profiles are updated. The problem of using
LCFG in grids is its centralized design, which does not
match with the decentralized characteristic of grids.

<TestSession id="MyPhotoGridTestSession">
 <TestSuite id=”myphotogrid.tests.AllTests">
 <TestEnvironment>Sun_P4</TestEnvironment>
 <TestEnvironment>Sun_Itanium</TestEnvironment>
 <TestEnvironment>JRockit_P4</TestEnvironment>
 <TestEnvironment>JRockit_Itanium</TestEnvironment>
 </TestSuite>
</TestSession>

As far as we know, there is no previous work targeted to
improve the software testability by exploring heterogeneous
execution environments or to use the huge environment
heterogeneity provide by grids to provide an environmental
test coverage.

6. CONCLUSIONS AND FUTURE WORK
PROPOSALS
We have presented a proposal of a solution to improve the
confidence on the correctness of applications designed to be
executed in heterogeneous environments.

Our solution is motivated by the observation that the
traditional ways to qualify test processes are based on code
coverage metrics. We believe that this approach is not
enough when dealing with applications that can (and do)
fail when interacting with heterogeneous environments.

We have good anecdotal evidence [18][4] corroborating the
results presented in [1], that the major causes of failures of
grid applications are due to environment configuration
errors. These kinds of errors are difficult to test and
discover during development time. Thus, even if the testing
processes score well on the traditional test coverage
metrics, it does not necessarily mean that the software is
well tested since configuration related errors only show
when the system interacts with the production environment.

We propose the utilization of InGriD to describe and
deploy test environments and GridUnit to coordinate and
monitor the execution of test sets. By combining these two
solutions we provide a way to introduce an environmental
coverage metric to our test sets, which is complementary
and orthogonal to traditional test coverage metrics.

We have shown how our solution could be applied to help
test a grid application called MyPhotoGrid, which uses the
grid to parallelize the generation of large photograph
albums.

The present work is aimed mainly to deal with unit tests
which can execute in a single machine. Our current work
aims at building a complete framework to allow the
distributed execution of system tests, involving mechanisms
to describe distributed tests, interact with distributed
components and detect distributed termination, which is
important to determine when the system reach a state were
assertions can be made over the final results of the test.

ACKNOWLEDGMENTS
Authors would also like to thank the financial support from
CNPq/Brazil and CAPES/Brazil, as well as the help
provided by the SmartFrog team. Thanks also to Katia
Saikoski for her suggestions and comments. Thanks to
Loreno de Oliveira for developing MyPhotoGrid.

REFERENCE
[1] A. Brown, D. A. Patterson, To Err is Human, First

Workshop on Evaluating and Architecting System
Dependability (EASY '01)

[2] A. Lastovetsky, Parallel Testing of Distributed
Software, Information and Software Technology
47(10), pp.657-662, Elsevier, 2005

[3] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. C.
Schmidt, and B. Natarajan, Skoll: Distributed
Continuous Quality Assurance, in Proceedings of the
26th IEEE/ACM International Conference on Software
Engineering (ICSE), Edinburgh, Scotland, May 2004

[4] A. N. Duarte, F. V. Brasileiro, W. Cirne, J. S. Alencar
Filho, Collaborative Fault Diagnosis in Grids through
Automated Tests, in: the Proceedings of the 20th IEEE
International Conference on Advanced Information
Networking and Applications Vienna, Austria, April
2006.

[5] A. N. Duarte, W. Cirne, F. V. Brasileiro and P. D. L.
Machado, GridUnit: Software Testing on the Grid, in:
Proceeding of the 28th ACM/IEEE International
Conference on Software Engineering, Shanghai, China,
May 2006.

[6] D. Paranhos, W. Cirne and F. Brasileiro, Trading
Information for Cycles: Using Replication to Schedule
Bag of Tasks Applications on Computational Grids, in:
Proceedings of the Euro-Par 2003: International
Conference on Parallel and Distributed Computing,
2003.

[7] E. F. Miller, Program Testing Techniques,
COMPSAC’77 IEEE Computer Society, 1977.

[8] E. Gamma, K. Beck. JUnit: A cook's tour. Java Report,
4(5):27-38, May 1999

[9] E. Starkloff, Designing a Parallel, Distributed Test
System, Proceedings of the IEEE AUTOTESTCON,
2000.

[10] F. Berman, G. Fox, A. J. G. Hey, Grid Computing:
Making the Global Infrastructure a Reality, John Wiley
& Sons Inc., 2003.

[11] G. M. Kapfhammer, Automatically and Transparently
Distributing the Execution of Regression Test Suites,
in: Proceedings of the 18th International Conference on
Testing Computer Software, 2001.

[12] I. Foster and C. Kesselman. The Grid: Blueprint for a
New Computing Infrastructure, 2nd Ed, Morgan
Kaufmann, 2004.

[13] M. Ben-Ari. The bug that destroyed a rocket. Journal
of Computer Science Education, 13(2):15–16, 1999.

[14] N. Andrade, F. Brasileiro, W. Cirne, M. Mowbray,
Discouraging Free-riding in a Peer-to-Peer CPU-

Sharing Grid. Proceedings of the 13th High
Performance Distributed Computing Symposium, June
2004.

[15] P. Anderson, A. Scobie, LCFG: The Next Generation.
UKUUG Winter Conference, 2002

[16] P. Anderson, P. Goldsack and J. Paterson, SmartFrog
meets LCFG: Autonomous Reconfiguration with
Central Policy Control, in: Proceedings of the 2002
Large Installations Systems Administration, 2002.

[17] P. Mellor, CAD: Computer-Aided Disaster, High.
Integr. Syst., 1(2):101-156, 1994.

[18] R. Medeiros, W. Cirne, F. Brasileiro and J. Sauvé,
Faults in grids: why are they so bad and what can be
done about it?, in: Proceedings of the Fourth
International Workshop on Grid Computing, 2003, 18-
24.

[19] The Globus Alliance, Globus. http://www.globus.org,
2005.

[20] W. Cirne, F. Brasileiro, N. Andrade, R. Santos, A.
Andrade, R. Novaes and M. Mowbray, Labs of the
World, Unite!!!, Accepted for publication by JoGC.
http://www.ourgrid.org/

